The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036491 Transformation of A036490: 5^a*7^b*11^c -> 5^a*7^floor((b+2)/2)*11^c. 3
 5, 7, 11, 25, 35, 49, 55, 77, 121, 125, 175, 245, 275, 49, 385, 539, 605, 625, 847, 875, 1225, 1331, 1375, 245, 1925, 343, 2695, 3025, 3125, 539, 4235, 4375, 5929, 6125, 6655, 6875, 1225, 9317, 9625, 1715, 13475, 14641, 15125, 15625, 343, 2695, 21175 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 160. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 MATHEMATICA f[pp_(*primes*), max_(*maximum term*)] := Module[{a, aa, k, iter}, k = Length[pp]; aa = Array[a, k]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; A036490 = f[{5, 7, 11}, 2*10^14] // Rest; a[n_] := (a0 = A036490[[n]]; b = Max[1, IntegerExponent[a0, 7]]; 7^(Floor[(b+2)/2]-b) * a0); Table[a[n], {n, 1, Length[A036490]}]; (* Jean-François Alcover, Sep 19 2012, updated Nov 12 2016 *) PROG (Haskell) a036491 n = f z z where    f x y | x `mod` 2401 == 0 = f (x `div` 49) (y `div` 7)          | x `mod` 343 == 0  = y `div` 7          | otherwise         = y    z = a036490 n -- Reinhard Zumkeller, Feb 19 2013 CROSSREFS Cf. A036490, A036492. Sequence in context: A249735 A218394 A067289 * A036490 A106330 A057247 Adjacent sequences:  A036488 A036489 A036490 * A036492 A036493 A036494 KEYWORD nonn,easy,look AUTHOR EXTENSIONS Offset corrected by Reinhard Zumkeller, Feb 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 23:37 EST 2020. Contains 338780 sequences. (Running on oeis4.)