login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036491 Transformation of A036490: 5^a*7^b*11^c -> 5^a*7^floor((b+2)/2)*11^c. 3
5, 7, 11, 25, 35, 49, 55, 77, 121, 125, 175, 245, 275, 49, 385, 539, 605, 625, 847, 875, 1225, 1331, 1375, 245, 1925, 343, 2695, 3025, 3125, 539, 4235, 4375, 5929, 6125, 6655, 6875, 1225, 9317, 9625, 1715, 13475, 14641, 15125, 15625, 343, 2695, 21175 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 160.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

MATHEMATICA

f[pp_(*primes*), max_(*maximum term*)] := Module[{a, aa, k, iter}, k = Length[pp]; aa = Array[a, k]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; A036490 = f[{5, 7, 11}, 2*10^14] // Rest; a[n_] := (a0 = A036490[[n]]; b = Max[1, IntegerExponent[a0, 7]]; 7^(Floor[(b+2)/2]-b) * a0); Table[a[n], {n, 1, Length[A036490]}]; (* Jean-François Alcover, Sep 19 2012, updated Nov 12 2016 *)

PROG

(Haskell)

a036491 n = f z z where

   f x y | x `mod` 2401 == 0 = f (x `div` 49) (y `div` 7)

         | x `mod` 343 == 0  = y `div` 7

         | otherwise         = y

   z = a036490 n

-- Reinhard Zumkeller, Feb 19 2013

CROSSREFS

Cf. A036490, A036492.

Sequence in context: A249735 A218394 A067289 * A036490 A106330 A057247

Adjacent sequences:  A036488 A036489 A036490 * A036492 A036493 A036494

KEYWORD

nonn,easy,look

AUTHOR

Olivier Gérard

EXTENSIONS

Offset corrected by Reinhard Zumkeller, Feb 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 23:37 EST 2020. Contains 338780 sequences. (Running on oeis4.)