login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036490 Numbers whose prime factors are in {5, 7, 11}. 3

%I

%S 5,7,11,25,35,49,55,77,121,125,175,245,275,343,385,539,605,625,847,

%T 875,1225,1331,1375,1715,1925,2401,2695,3025,3125,3773,4235,4375,5929,

%U 6125,6655,6875,8575,9317,9625,12005,13475,14641,15125,15625,16807

%N Numbers whose prime factors are in {5, 7, 11}.

%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 160.

%H Reinhard Zumkeller, <a href="/A036490/b036490.txt">Table of n, a(n) for n = 1..1000</a>

%F Sum_{n>=1} 1/a(n) = (5*7*11)/((5-1)*(7-1)*(11-1)) - 1 = 29/48. - _Amiram Eldar_, Sep 24 2020

%F a(n) ~ exp((6*log(5)*log(7)*log(11)*n)^(1/3)) / sqrt(385). - _Vaclav Kotesovec_, Sep 24 2020

%t Select[Range[20000], (fi = FactorInteger[#][[All, 1]]; Intersection[fi, {5, 7, 11}] == fi)&]

%t (* or, for a large number of terms: *)

%t f[pp_(* primes *), max_(* maximum term *)] := Module[{a, aa, k, iter}, k = Length[pp]; aa = Array[a, k]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; A036490 = f[{5, 7, 11}, 2*10^14] // Rest (* _Jean-François Alcover_, Sep 19 2012, updated Nov 12 2016 *)

%o (Haskell)

%o import Data.Set (Set, fromList, insert, deleteFindMin)

%o a036490 n = a036490_list !! (n-1)

%o a036490_list = f $ fromList [5,7,11] where

%o f s = m : (f $ insert (5 * m) $ insert (7 * m) $ insert (11 * m) s')

%o where (m, s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, Feb 19 2013

%Y Cf. A036491, A036492.

%K nonn,easy

%O 1,1

%A _Olivier Gérard_

%E Offset corrected by _Reinhard Zumkeller_, Feb 19 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 01:22 EST 2020. Contains 338631 sequences. (Running on oeis4.)