login
A036128
a(n) = 2^n mod 53.
4
1, 2, 4, 8, 16, 32, 11, 22, 44, 35, 17, 34, 15, 30, 7, 14, 28, 3, 6, 12, 24, 48, 43, 33, 13, 26, 52, 51, 49, 45, 37, 21, 42, 31, 9, 18, 36, 19, 38, 23, 46, 39, 25, 50, 47, 41, 29, 5, 10, 20, 40, 27, 1, 2, 4, 8, 16, 32, 11, 22
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
a(n) = a(n-1) - a(n-26) + a(n-27). - R. J. Mathar, Feb 06 2011
a(n) = a(n+52). - R. J. Mathar, Jun 04 2016
MAPLE
i := pi(53) ; [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[2, Range[0, 60], 53] (* Harvey P. Dale, Apr 11 2013 *)
PROG
(PARI) a(n)=lift(Mod(2, 53)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(2, n, 53): n in [0..100]]; // G. C. Greubel, Oct 17 2018
(Python) for n in range(0, 100): print(int(pow(2, n, 53)), end=' ') # Stefano Spezia, Oct 17 2018
(GAP) List([0..60], n->PowerMod(2, n, 53)); # Muniru A Asiru, Oct 17 2018
CROSSREFS
Cf. A000079 (2^n).
Sequence in context: A364628 A328753 A119990 * A073477 A220105 A070351
KEYWORD
nonn,easy
STATUS
approved