login
A036125
a(n) = 6^n mod 41.
1
1, 6, 36, 11, 25, 27, 39, 29, 10, 19, 32, 28, 4, 24, 21, 3, 18, 26, 33, 34, 40, 35, 5, 30, 16, 14, 2, 12, 31, 22, 9, 13, 37, 17, 20, 38, 23, 15, 8, 7, 1, 6, 36, 11, 25, 27, 39, 29, 10, 19, 32, 28, 4, 24, 21, 3, 18, 26, 33, 34
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,-1,1).
FORMULA
a(n) = a(n+40). - R. J. Mathar, Jun 04 2016
a(n) = a(n-1) - a(n-20) + a(n-21). - G. C. Greubel, Oct 16 2018
a(n) = 41 - a(n+20) for all n in Z. - Michael Somos, Oct 17 2018
MAPLE
[ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[6, Range[0, 60], 41] (* Harvey P. Dale, Jul 08 2017 *)
PROG
(PARI) a(n)=lift(Mod(6, 41)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(6, n, 41): n in [0..100]]; // G. C. Greubel, Oct 16 2018
(GAP) List([0..65], n->PowerMod(6, n, 41)); # Muniru A Asiru, Oct 18 2018
CROSSREFS
Cf. A000400 (6^n).
Sequence in context: A304255 A050112 A250202 * A001311 A360442 A137868
KEYWORD
nonn,easy
STATUS
approved