

A036106


A summarize Fibonacci sequence: summarize the previous two terms!.


2



1, 2, 1211, 2231, 133241, 14333231, 24632241, 1634534231, 261544434231, 262564533241, 363564435231, 464544634221, 463574533221, 17363574434221, 37263554634231, 37363554734231, 37364544933221, 1937263554933221
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

From the 26th term the sequence gets into a cycle of 46.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..254 = 5 periods.
Index to sequences related to say what you see


EXAMPLE

a(24) = 293847463554538221;
a(25) = 294827365564537221 = first term of first period;
a(26) = 293837366554537221;
a(70) = 294837364554538221 = last term of first period != a(24);
a(71) = 294827365564537221 = a(25) = first term of second period;
a(72) = 293837366554537221 = a(26);
a(116) = 294837364554538221 = a(70) = last term of second period;
a(117) = 294827365564537221 = a(71) = first term of third period.


PROG

(Haskell)
import Data.List (sort, group); import Data.Function (on)
a036106 n = a036106_list !! n
a036106_list = 1 : 2 : map (read . concatMap say . reverse . group . sort)
(zipWith ((++) `on` show) a036106_list $ tail a036106_list)
where say ws = (show $ length ws) ++ [head ws]
 Reinhard Zumkeller, Oct 05 2015


CROSSREFS

Cf. A036059.
Sequence in context: A241921 A119554 A036104 * A171940 A160003 A078170
Adjacent sequences: A036103 A036104 A036105 * A036107 A036108 A036109


KEYWORD

base,easy,nice,nonn


AUTHOR

Floor van Lamoen


STATUS

approved



