login
A036064
Triangle of flag coefficients [ n k ] (numerators of rational parts).
2
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 8, 4, 4, 8, 1, 1, 15, 5, 15, 5, 15, 1, 1, 16, 6, 8, 8, 6, 16, 1, 1, 35, 7, 105, 35, 105, 7, 35, 1, 1, 128, 8, 64, 16, 16, 64, 8, 128, 1, 1, 315, 9, 315, 21, 945, 21, 315, 9, 315, 1, 1, 256, 10, 128, 80, 32, 32, 80, 128, 10, 256, 1, 1, 693
OFFSET
0,8
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 69.
FORMULA
[ 2m 2k ] = C(2m, 2k)/C(m, k); [ 2m 2k+1 ] = Pi(2m)!/4^m*k!m!(m-k-1)!; [ 2m+1 2k ] = 4^k*C(m, k)/C(2k, k); [ 2m+1 2k+1 ] = 4^(m-k)*C(m, m-k)/C(2m-2k, m-k).
EXAMPLE
1; 1 1; 1 Pi/2 1; 1 2 2 1; 1 3Pi/4 3 3Pi/4 1; 1 8/3 4 4 8/3 1; ...
MATHEMATICA
f[m_?EvenQ, k_?EvenQ] := Binomial[m, k]/Binomial[m/2, k/2]; f[m_?EvenQ, k_?OddQ] := (Pi*m!)/(2^m*(((1/2)*(k - 1))!*(-1 + (1 - k)/2 + m/2)!*(m/2)!)); f[m_?OddQ, k_?EvenQ] := (2^k*Binomial[(1/2)*(m - 1), k/2])/ Binomial[k, k/2]; f[m_?OddQ, k_?OddQ] := (4^((1 - k)/2 + (1/2)*(m - 1))* Binomial[(1/2)*(m - 1), (1 - k)/2 + (1/2)*(m - 1)]) / Binomial[m - k , (1 - k)/2 + (1/2)*(m - 1)]; A036064 = Numerator[ Flatten[ Table[ f[m, k], {m, 0, 12}, {k, 0, m}] /. Pi -> 1]](* Jean-François Alcover, May 10 2012, from formula *)
CROSSREFS
Cf. A036065.
Sequence in context: A258140 A140408 A047080 * A352744 A347967 A090706
KEYWORD
nonn,easy,tabl,nice,frac
EXTENSIONS
More terms from Naohiro Nomoto, Jun 20 2001
STATUS
approved