login
Increasing gaps among twin primes: size.
5

%I #36 Jun 24 2022 03:47:52

%S 0,4,10,16,28,34,70,148,166,208,280,370,496,628,922,928,1006,1450,

%T 1510,1528,1720,1900,2188,2254,2830,2866,3010,3100,3178,3478,3802,

%U 4768,5290,6028,6280,6472,6550,6646,7048,7978,8038,8992,9310,9316,10198,10336,10666,10708

%N Increasing gaps among twin primes: size.

%H Martin Raab, <a href="/A036063/b036063.txt">Table of n, a(n) for n = 1..82</a>, terms up to a(75) from Max Alekseyev.

%H Alexei Kourbatov and Marek Wolf, <a href="https://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.

%H Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/twin_gaps.html">Gaps between twin primes</a>

%H Randall Rathbun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;b24a8d59.9811">Twin Prime Gaps</a>, NMBRTHRY Mailing List, Nov 23 1998.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeConstellation.html">Prime Constellation</a>

%F a(n) = A036062(n) - A036061(n).

%F a(n) = A113274(n)-2.

%Y Cf. A036061, A036062, A002386.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E Terms 0, 4 prepended, missing term 1006 inserted, and more terms added from A113274 by _Max Alekseyev_, Nov 05 2015