%I #49 Jun 24 2022 04:35:49
%S 5,11,29,59,101,347,419,809,2549,6089,13679,18911,24917,62927,188831,
%T 688451,689459,851801,2870471,4871441,9925709,14658419,17384669,
%U 30754487,32825201,96896909,136286441,234970031,248644217,255953429
%N Increasing gaps among twin primes: the smallest prime of the second twin pair.
%H Martin Raab, <a href="/A036062/b036062.txt">Table of n, a(n) for n = 1..82</a> (terms up to a(75) from Max Alekseyev)
%H Randall Rathbun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;b24a8d59.9811">Twin Prime Gaps</a>, NMBRTHRY Mailing List, Nov 23 1998.
%H Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
%H Alexei Kourbatov and Marek Wolf, <a href="https://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%H Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/twin_gaps.html">Gaps between twin primes</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeConstellation.html">Prime Constellation</a>
%F a(n) = A036061(n) + A036063(n).
%Y Cf. A036061, A036063, A002386, A113274, A113275.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E Terms a(3)-a(41) are given by Rathbun (1998).
%E Corrected by _Jud McCranie_, Jan 04 2001
%E Terms up to a(72) are listed in Kourbatov (2013), terms up to a(75) on Oliveira e Silva's website, added by _Max Alekseyev_, Nov 06 2015