login
A036007
Number of partitions of n into parts not of the form 25k, 25k+8 or 25k-8. Also number of partitions with at most 7 parts of size 1 and differences between parts at distance 11 are greater than 1.
0
1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 72, 94, 124, 161, 209, 266, 342, 432, 547, 686, 860, 1068, 1329, 1639, 2021, 2478, 3035, 3696, 4501, 5452, 6598, 7954, 9577, 11488, 13769, 16445, 19619, 23341, 27734, 32866, 38907, 45944, 54191, 63784
OFFSET
1,2
COMMENTS
Case k=12,i=8 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ exp(2*Pi*sqrt(11*n/3)/5) * 11^(1/4) * cos(9*Pi/50) / (3^(1/4) * 5^(3/2) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(25*k))*(1 - x^(25*k+ 8-25))*(1 - x^(25*k- 8))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A035986 A035996 A261775 * A027342 A363231 A184643
KEYWORD
nonn,easy
STATUS
approved