%I
%S 1,2,3,5,7,11,15,22,29,41,54,74,96,127,164,214,272,350,441,560,700,
%T 879,1090,1357,1671,2062,2524,3093,3762,4581,5543,6709,8078,9725,
%U 11655,13965,16664,19875,23623,28060,33225,39314,46388,54691,64320
%N Number of partitions of n into parts not of the form 23k, 23k+9 or 23k9. Also number of partitions with at most 8 parts of size 1 and differences between parts at distance 10 are greater than 1.
%C Case k=11,i=9 of Gordon Theorem.
%D G. E. Andrews, The Theory of Partitions, AddisonWesley, 1976, p. 109.
%F a(n) ~ exp(2*Pi*sqrt(10*n/69)) * 10^(1/4) * cos(5*Pi/46) / (3^(1/4) * 23^(3/4) * n^(3/4)).  _Vaclav Kotesovec_, May 10 2018
%t nmax = 60; Rest[CoefficientList[Series[Product[(1  x^(23*k))*(1  x^(23*k+ 923))*(1  x^(23*k 9))/(1  x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, May 10 2018 *)
%K nonn,easy
%O 1,2
%A _Olivier GĂ©rard_
