%I
%S 1,2,3,5,7,10,14,20,27,37,49,66,86,113,146,189,240,307,387,489,611,
%T 764,947,1175,1446,1779,2176,2660,3233,3928,4749,5737,6902,8295,9934,
%U 11884,14170,16877,20045,23780,28136,33254,39210,46180,54273,63711
%N Number of partitions of n into parts not of the form 23k, 23k+6 or 23k6. Also number of partitions with at most 5 parts of size 1 and differences between parts at distance 10 are greater than 1.
%C Case k=11,i=6 of Gordon Theorem.
%D G. E. Andrews, The Theory of Partitions, AddisonWesley, 1976, p. 109.
%F a(n) ~ exp(2*Pi*sqrt(10*n/69)) * 10^(1/4) * cos(11*Pi/46) / (3^(1/4) * 23^(3/4) * n^(3/4)).  _Vaclav Kotesovec_, May 10 2018
%t nmax = 60; Rest[CoefficientList[Series[Product[(1  x^(23*k))*(1  x^(23*k+ 623))*(1  x^(23*k 6))/(1  x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, May 10 2018 *)
%K nonn,easy
%O 1,2
%A _Olivier GĂ©rard_
