login
A035990
Number of partitions of n into parts not of the form 23k, 23k+2 or 23k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 10 are greater than 1.
0
1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, 45, 58, 75, 96, 121, 154, 193, 242, 301, 374, 461, 570, 698, 854, 1042, 1268, 1535, 1859, 2240, 2696, 3235, 3875, 4627, 5521, 6565, 7797, 9240, 10934, 12906, 15220, 17907, 21043, 24683, 28915, 33811, 39497
OFFSET
1,3
COMMENTS
Case k=11,i=2 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ exp(2*Pi*sqrt(10*n/69)) * 10^(1/4) * sin(2*Pi/23) / (3^(1/4) * 23^(3/4) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(23*k))*(1 - x^(23*k+ 2-23))*(1 - x^(23*k- 2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A035963 A035971 A035980 * A036001 A027336 A237830
KEYWORD
nonn,easy
STATUS
approved