login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035985 Number of partitions of n into parts not of the form 21k, 21k+7 or 21k-7. Also number of partitions with at most 6 parts of size 1 and differences between parts at distance 9 are greater than 1. 14
1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 119, 153, 199, 252, 324, 406, 515, 642, 804, 994, 1236, 1517, 1869, 2282, 2791, 3387, 4118, 4970, 6006, 7217, 8673, 10374, 12411, 14780, 17601, 20883, 24766, 29274, 34588, 40741, 47964, 56319, 66080, 77350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Case k=10, i=7 of Gordon Theorem.

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

GDZ, Digitized volumes of Crelle

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.

G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. This sequence arises as the coefficients of Y = C/B on p. 118.

FORMULA

Euler transform of period 7 sequence [1, 1, 1, 1, 1, 1, 0, ...]. - Michael Somos, Jan 17 2006

Given g.f. A(x), then B(x)=x*A(x^4) satisfies 0=f(B(x), B(x^3)) where f(u, v)=(u^4+v^4)-u*v*(1+3*u*v+7*(u*v)^2).

G.f.: Product_{k>0} (1-x^(7k))/(1-x^k).

Given g.f. A(x) then B(x)=x*A(x)^4 satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u,v,w)= (u^2+u*w+w^2) -v -8*v*(u+v+w) -49*v^2*(u+w). - Michael Somos, May 28 2006

G.f. is product k>0 P7(x^k) where P7 is 7th cyclotomic polynomial.

Expansion of q^(-1/4)eta(q^7)/eta(q) in powers of q. - Michael Somos, Jan 17 2006

a(n) ~ 2*Pi * BesselI(1, sqrt((4*n + 1)/7) * Pi) / (7*sqrt(4*n + 1)) ~ exp(2*Pi*sqrt(n/7)) / (2 * 7^(3/4) * n^(3/4)) * (1 + (Pi/(4*sqrt(7)) - 3*sqrt(7)/(16*Pi)) / sqrt(n) + (Pi^2/224 - 105/(512*Pi^2) - 15/64) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017

a(n) = (1/n)*Sum_{k=1..n} A113957(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

EXAMPLE

B(x) = x +x^5 +2*x^9 +3*x^13 +5*x^17 +7*x^21 +11*x^25 +14*x^29 +...

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)

QP = QPochhammer; s = QP[q^7]/QP[q] + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)

PROG

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^7+A)/eta(x+A), n))} /* Michael Somos, Jan 17 2006 */

(PARI) Vec(prod(k=1, 50, (1 - x^(7*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017

CROSSREFS

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A261775 (m=8), A104502 (m=9), A261776 (m=10).

Cf. A320609.

Sequence in context: A112581 A288255 A035976 * A035995 A036006 A027341

Adjacent sequences:  A035982 A035983 A035984 * A035986 A035987 A035988

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:34 EDT 2019. Contains 321311 sequences. (Running on oeis4.)