login
A035962
Number of partitions in parts not of the form 17k, 17k+1 or 17k-1. Also number of partitions with no part of size 1 and differences between parts at distance 7 are greater than 1.
0
0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 54, 65, 86, 103, 133, 160, 202, 243, 305, 364, 451, 540, 661, 788, 960, 1139, 1377, 1632, 1958, 2314, 2764, 3253, 3866, 4542, 5370, 6289, 7410, 8652, 10154, 11830, 13830, 16072, 18735, 21714, 25234, 29185
OFFSET
1,4
COMMENTS
Case k=8,i=1 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ exp(2*Pi*sqrt(7*n/51)) * 7^(1/4) * sin(Pi/17) / (3^(1/4) * 17^(3/4) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(17*k))*(1 - x^(17*k+ 1-17))*(1 - x^(17*k- 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A266781 A035955 A240015 * A240016 A035970 A240017
KEYWORD
nonn,easy
STATUS
approved