%I #30 Jul 13 2023 06:12:25
%S 0,9,54,219,714,2001,5004,11439,24309,48619,92377,167959,293929,
%T 497419,817189,1307503,2042974,3124549,4686824,6906899,10015004,
%U 14307149,20160074,28048799,38567099,52451255,70607459,94143279
%N One less than number of n-multisets chosen from a 10-set.
%C Number of distinct n-digit numbers up to permutations of digits. - _Michael Somos_, Jul 11 2002
%C Equivalently, for n > 0, a(n) = number of n-digit decimal numbers d_1 d_2 ... d_n with d_1 > 0 and d_1 >= d_2 >= ... >= d_n >= 0.. - _N. J. A. Sloane_, Jul 13 2023
%H Michael Beeler, R. William Gosper and Richard C. Schroeppel, <a href="http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item56">HAKMEM, ITEM 56</a>, Cambridge, MA: Mass. Institute of Technology Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972, Item 56.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence.</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F G.f.: 1/(1-x)^10-1/(1-x). - _Michael Somos_, Jul 11 2002
%p binomial(10+n-1,n)-1;
%t Table[Binomial[9 + n, n] - 1, {n, 0, 27}] (* _Michael De Vlieger_, Jul 14 2015 *)
%t CoefficientList[Series[1/(1-x)^10-1/(1-x),{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,9,54,219,714,2001,5004,11439,24309,48619},30] (* _Harvey P. Dale_, Jul 11 2023 *)
%o (PARI) a(n)=if(n<0,0,binomial(n+9,9)-1)
%Y Equals A000582 - 1. Cf. A014553, A179239.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_