login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035927 One less than number of n-multisets chosen from a 10-set. 4
0, 9, 54, 219, 714, 2001, 5004, 11439, 24309, 48619, 92377, 167959, 293929, 497419, 817189, 1307503, 2042974, 3124549, 4686824, 6906899, 10015004, 14307149, 20160074, 28048799, 38567099, 52451255, 70607459, 94143279 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of distinct n-digit numbers up to permutations of digits.

REFERENCES

Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: Mass. Institute of Technology Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972, Item 56.

LINKS

Table of n, a(n) for n=0..27.

Beeler, M., Gosper, R. W. and Schroeppel, R., HAKMEM, ITEM 56

Eric Weisstein's World of Mathematics, Multiplicative Persistence.

FORMULA

G.f.: 1/(1-x)^10-1/(1-x). - Additional comments from Michael Somos, Jul 11, 2002.

MAPLE

binomial(10+n-1, n)-1;

PROG

(PARI) a(n)=if(n<0, 0, binomial(n+9, 9)-1)

CROSSREFS

Equals A000582 - 1. Cf. A014553.

Sequence in context: A013567 A073974 A223927 * A250286 A059597 A023008

Adjacent sequences:  A035924 A035925 A035926 * A035928 A035929 A035930

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Additional comments from Michael Somos, Jul 11, 2002.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 15:45 EST 2014. Contains 252236 sequences.