%I #15 Sep 05 2023 15:10:07
%S 1,72,2592,62232,1121472,16186536,194986080,2017132920,18300435840,
%T 147972367880,1080041397408,7190430174936,44042615547456,
%U 250012542410856,1323529602867936,6569619630522168,30721376739859200
%N Coordination sequence for lattice D*_36 (with edges defined by l_1 norm = 1).
%C Starts to differ from A035731 at n=18. - _Mark van Hoeij_ Apr 22 2013
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (36, -630, 7140, -58905, 376992, -1947792, 8347680, -30260340, 94143280, -254186856, 600805296, -1251677700, 2310789600, -3796297200, 5567902560, -7307872110, 8597496600, -9075135300, 8597496600, -7307872110, 5567902560, -3796297200, 2310789600, -1251677700, 600805296, -254186856, 94143280, -30260340, 8347680, -1947792, 376992, -58905, 7140, -630, 36, -1).
%F a(m)=add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1); with n=36.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, J. Serra-Sagrista (jserra(AT)ccd.uab.es)