login
A035744
Coordination sequence for 49-dimensional cubic lattice.
2
1, 98, 4802, 156898, 3846402, 75483618, 1235463362, 17350403938, 213469045762, 2337935479138, 23082542932162, 207557329696738, 1714286978300162, 13098711884621538, 93160372030893762
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (49, -1176, 18424, -211876, 1906884, -13983816, 85900584, -450978066, 2054455634, -8217822536, 29135916264, -92263734836, 262596783764, -675248872536, 1575580702584, -3348108992991, 6499270398159, -11554258485616, 18851684897584, -28277527346376, 39049918716424, -49699896548176, 58343356817424, -63205303218876, 63205303218876, -58343356817424, 49699896548176, -39049918716424, 28277527346376, -18851684897584, 11554258485616, -6499270398159, 3348108992991, -1575580702584, 675248872536, -262596783764, 92263734836, -29135916264, 8217822536, -2054455634, 450978066, -85900584, 13983816, -1906884, 211876, -18424, 1176, -49, 1).
FORMULA
G.f.: ((1+x)/(1-x))^49.
n*a(n) = 98*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 31 2018
PROG
(PARI) x='x+O('x^99); Vec(((1+x)/(1-x))^49) \\ Altug Alkan, Aug 31 2018
CROSSREFS
Sequence in context: A178974 A233920 A017814 * A017761 A093298 A201389
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved