login
A035742
Coordination sequence for 47-dimensional cubic lattice.
2
1, 94, 4418, 138462, 3256066, 61297118, 962492226, 12968679262, 153103850498, 1609171411294, 15248694346562, 131623619207134, 1043758929078018, 7658553780354782, 52316368750163266, 334486657443997278, 2010885935139876866, 11414151633224022622
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (47, -1081, 16215, -178365, 1533939, -10737573, 62891499, -314457495, 1362649145, -5178066751, 17417133617, -52251400851, 140676848445, -341643774795, 751616304549, -1503232609098, 2741188875414, -4568648125690, 6973199770790, -9762479679106, 12551759587422, -14833897694226, 16123801841550, -16123801841550, 14833897694226, -12551759587422, 9762479679106, -6973199770790, 4568648125690, -2741188875414, 1503232609098, -751616304549, 341643774795, -140676848445, 52251400851, -17417133617, 5178066751, -1362649145, 314457495, -62891499, 10737573, -1533939, 178365, -16215, 1081, -47, 1).
FORMULA
G.f.: ((1+x)/(1-x))^47.
n*a(n) = 94*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 31 2018
MATHEMATICA
CoefficientList[Series[((1 + x)/(1 - x))^47, {x, 0, 20}], x] (* Wesley Ivan Hurt, May 26 2015 *)
PROG
(PARI) x='x+O('x^99); Vec(((1+x)/(1-x))^47) \\ Altug Alkan, Aug 31 2018
CROSSREFS
Sequence in context: A347723 A195757 A017810 * A017757 A220759 A218178
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved