login
A035738
Coordination sequence for 43-dimensional cubic lattice.
2
1, 86, 3698, 106038, 2281666, 39308278, 564939762, 6968765846, 75337937666, 725316000022, 6297987950322, 49832255247990, 362379485902530, 2439445430411190, 15295775774728050, 89809967148130518, 496112377224088578
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (43, -903, 12341, -123410, 962598, -6096454, 32224114, -145008513, 563921995, -1917334783, 5752004349, -15338678264, 36576848168, -78378960360, 151532656696, -265182149218, 421171648758, -608359048206, 800472431850, -960566918220, 1052049481860, -1052049481860, 960566918220, -800472431850, 608359048206, -421171648758, 265182149218, -151532656696, 78378960360, -36576848168, 15338678264, -5752004349, 1917334783, -563921995, 145008513, -32224114, 6096454, -962598, 123410, -12341, 903, -43, 1).
FORMULA
G.f.: ((1+x)/(1-x))^43.
n*a(n) = 86*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 27 2018
CROSSREFS
Sequence in context: A055534 A230783 A017802 * A017749 A319134 A266823
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
STATUS
approved