login
Coordination sequence for 36-dimensional cubic lattice.
3

%I #18 Aug 24 2018 06:36:52

%S 1,72,2592,62232,1121472,16186536,194986080,2017132920,18300435840,

%T 147972367880,1080041397408,7190430174936,44042615547456,

%U 250012542410856,1323529602867936,6569619630522168,30721376739859200

%N Coordination sequence for 36-dimensional cubic lattice.

%H Seiichi Manyama, <a href="/A035731/b035731.txt">Table of n, a(n) for n = 0..10000</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="https://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%H <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (36, -630, 7140, -58905, 376992, -1947792, 8347680, -30260340, 94143280, -254186856, 600805296, -1251677700, 2310789600, -3796297200, 5567902560, -7307872110, 8597496600, -9075135300, 8597496600, -7307872110, 5567902560, -3796297200, 2310789600, -1251677700, 600805296, -254186856, 94143280, -30260340, 8347680, -1947792, 376992, -58905, 7140, -630, 36, -1).

%F G.f.: ((1+x)/(1-x))^36.

%F n*a(n) = 72*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 24 2018

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998