login
Coordination sequence for 29-dimensional cubic lattice.
1

%I #22 Aug 22 2018 11:13:22

%S 1,58,1682,32538,472642,5502170,53502738,447238522,3282606338,

%T 21502426362,127340157970,689022818138,3436393752642,15914622204058,

%U 68877486633362,280118954225850,1075699009872898,3917195699177402

%N Coordination sequence for 29-dimensional cubic lattice.

%H Seiichi Manyama, <a href="/A035724/b035724.txt">Table of n, a(n) for n = 0..10000</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="https://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%H <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (29, -406, 3654, -23751, 118755, -475020, 1560780, -4292145, 10015005, -20030010, 34597290, -51895935, 67863915, -77558760, 77558760, -67863915, 51895935, -34597290, 20030010, -10015005, 4292145, -1560780, 475020, -118755, 23751, -3654, 406, -29, 1).

%F G.f.: ((1+x)/(1-x))^29.

%F n*a(n) = 58*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 22 2018

%t CoefficientList[Series[((1+x)/(1-x))^29,{x,0,20}],x] (* _Harvey P. Dale_, Mar 03 2017 *)

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998