login
A035719
Coordination sequence for 24-dimensional cubic lattice.
1
1, 48, 1152, 18448, 221952, 2141808, 17282432, 120037968, 733189632, 4003707568, 19804348032, 89694733968, 375282559232, 1461554224368, 5332713820032, 18331364551888, 59660218248192, 184627114364208
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (24, -276, 2024, -10626, 42504, -134596, 346104, -735471, 1307504, -1961256, 2496144, -2704156, 2496144, -1961256, 1307504, -735471, 346104, -134596, 42504, -10626, 2024, -276, 24, -1).
FORMULA
G.f.: ((1+x)/(1-x))^24.
n*a(n) = 48*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 21 2018
MATHEMATICA
CoefficientList[Series[((1+x)/(1-x))^24, {x, 0, 20}], x] (* Harvey P. Dale, Feb 16 2013 *)
CROSSREFS
Sequence in context: A010964 A287991 A290403 * A035797 A213442 A161693
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
Formula clarified by Harvey P. Dale, Feb 16 2013
STATUS
approved