login
Coordination sequence for 23-dimensional cubic lattice.
1

%I #24 Aug 20 2018 07:44:27

%S 1,46,1058,16238,187266,1732590,13408034,89347502,523804162,

%T 2746713774,13053926690,56836459246,228751366018,857520299118,

%U 3013639296546,9985011435310,31343842260994,93623053855022

%N Coordination sequence for 23-dimensional cubic lattice.

%H Seiichi Manyama, <a href="/A035718/b035718.txt">Table of n, a(n) for n = 0..10000</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).

%F G.f.: ((1+x)/(1-x))^23. [Corrected by _Harvey P. Dale_, Dec 27 2011]

%F n*a(n) = 46*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 20 2018

%t CoefficientList[Series[((1+x)/(1-x))^23,{x,0,20}],x] (* _Harvey P. Dale_, Dec 27 2011 *)

%K nonn,easy

%O 0,2

%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

%E Recomputed by _N. J. A. Sloane_, Nov 25 1998