login
A035717
Coordination sequence for 22-dimensional cubic lattice.
1
1, 44, 968, 14212, 156816, 1388508, 10286936, 65652532, 368804128, 1854105484, 8453107432, 35329425124, 136585481648, 492183451452, 1663935545976, 5307436592788, 16051394232896, 46227817361132, 127269237312008, 336090491414084
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (22, -231, 1540, -7315, 26334, -74613, 170544, -319770, 497420, -646646, 705432, -646646, 497420, -319770, 170544, -74613, 26334, -7315, 1540, -231, 22, -1).
FORMULA
G.f.: ((1+x)/(1-x))^22.
n*a(n) = 44*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Aug 20 2018
MATHEMATICA
CoefficientList[Series[((x+1)/(1-x))^22, {x, 0, 20}], x] (* Harvey P. Dale, Aug 20 2011 *)
CROSSREFS
Sequence in context: A191374 A299466 A010960 * A035611 A161679 A162182
KEYWORD
nonn,easy
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 25 1998
Formula clarified by Harvey P. Dale, Aug 20 2011
STATUS
approved