login
A035687
Number of partitions of n into parts 8k+2 and 8k+5 with at least one part of each type.
4
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 4, 1, 4, 3, 4, 4, 7, 4, 10, 4, 11, 8, 11, 11, 15, 12, 21, 12, 25, 18, 26, 24, 31, 28, 42, 29, 50, 38, 55, 50, 62, 58, 79, 63, 95, 76, 105, 96, 118, 113, 144, 123, 172, 145, 193, 178, 213, 208, 255, 230, 302, 262, 340, 316
OFFSET
1,15
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 5))). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 70; s1 = Range[0, nmax/8]*8 + 2; s2 = Range[0, nmax/8]*8 + 5;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 70; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
KEYWORD
nonn
STATUS
approved