%I #15 Aug 16 2020 20:49:29
%S 0,0,0,0,1,1,1,1,2,2,2,4,5,5,5,7,8,8,11,14,15,15,19,22,23,27,33,37,38,
%T 44,50,54,60,71,79,84,94,106,114,125,143,159,169,187,208,225,242,273,
%U 302,323,351,390,421,451,498,551,590,636,697,757,807,881,965,1039
%N Number of partitions of n into parts 7k+1 and 7k+4 with at least one part of each type.
%H Alois P. Heinz, <a href="/A035659/b035659.txt">Table of n, a(n) for n = 1..1000</a> (first 125 terms from Robert Price)
%F G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(7 k + 4))). - _Robert Price_, Aug 16 2020
%t nmax = 64; s1 = Range[0, nmax/7]*7 + 1; s2 = Range[0, nmax/7]*7 + 4;
%t Table[Count[IntegerPartitions[n, All, s1~Join~s2],
%t x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* _Robert Price_, Aug 14 2020 *)
%t nmax = 64; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* _Robert Price_, Aug 16 2020 *)
%Y Cf. A035441-A035468, A035618-A035658, A035660-A035699.
%K nonn
%O 1,9
%A _Olivier GĂ©rard_