The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035615 Number of winning length n strings with a 2-symbol alphabet in "same game". 20
 1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, 5878, 12350, 25778, 53470, 110332, 226610, 463602, 945214, 1921550, 3896642, 7885092, 15927086, 32121582, 64697726, 130166378, 261637446, 525478668, 1054673162, 2115601450, 4241716734, 8501080838, 17031744170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Strings that can be reduced to null string by repeatedly removing an entire run of two or more consecutive symbols. LINKS Robert Price, Table of n, a(n) for n = 0..1000 Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy] Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238. Sascha Kurz, Polynomials for same game, pdf. Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004. Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 6, 6, -3, -2). FORMULA G.f.: x(2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/[(1 - x^2)(1 - 2x)(1 - x - x^2)^2] (conjectured). - Ralf Stephan, May 11 2004. Established by Burns and Purcell - see link. a(0) = 1, a(1) = 0, a(2) = 2, a(3) = 2, a(4) = 6, a(5) = 12, a(6) = 26, a(7) = 58, a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 3*a(n-6) - 2*a(n-7). - Harvey P. Dale, Sep 26 2012 a(n) = 2^n - 2 * n * Fibonacci(n-2) - (-1)^n - 1 for n >= 2 (proved by Burns and Purcell (2005, 2007)). - Petros Hadjicostas, Jul 04 2018 EXAMPLE 11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null. MATHEMATICA Join[{1}, Rest[CoefficientList[Series[x (2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/((1 - x^2)(1 - 2x)(1 - x - x^2)^2), {x, 0, 40}], x]]] (* or *) Join[{1}, LinearRecurrence[{4, -2, -8, 6, 6, -3, -2}, {0, 2, 2, 6, 12, 26, 58}, 40]] (* Harvey P. Dale, Sep 26 2012 *) PROG (PARI) a(n)=if(n, ([0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1; -2, -3, 6, 6, -8, -2, 4]^(n-1)*[0; 2; 2; 6; 12; 26; 58])[1, 1], 1) \\ Charles R Greathouse IV, Jun 15 2015 CROSSREFS Cf. A035617, A065237, A065238, A065239, A065240, A065241, A065242, A065243. See A309874 for the losing strings. For some similar questions in base 10, see A323830, A323831, A320487. - N. J. A. Sloane, Feb 04 2019 Row b=2 of A323844. Sequence in context: A173392 A324128 A217211 * A115962 A019311 A216215 Adjacent sequences:  A035612 A035613 A035614 * A035616 A035617 A035618 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms from Naohiro Nomoto, Jul 09 2001 Further terms from Sascha Kurz, Oct 19 2001 a(27)-a(36) from Robert Price, Apr 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 9 16:24 EDT 2020. Contains 335544 sequences. (Running on oeis4.)