This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035534 Number of partitions of n with equal number of parts congruent to each of 0 and 1 (mod 3). 1
 1, 0, 1, 0, 2, 1, 2, 3, 4, 4, 8, 7, 12, 13, 19, 22, 30, 35, 47, 54, 74, 85, 109, 131, 165, 194, 247, 289, 359, 427, 523, 617, 757, 889, 1078, 1272, 1529, 1799, 2154, 2529, 3013, 3528, 4187, 4894, 5779, 6748, 7937, 9241, 10844, 12599, 14724, 17089, 19912, 23048, 26801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 MAPLE b:= proc(n, i, c) option remember; `if`(n=0,       `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+       `if`(i>n, 0, b(n-i, i, c+irem(i+2, 3)-1))))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..70);  # Alois P. Heinz, Dec 07 2016 MATHEMATICA equalQ[partit_] := Total[Switch[Mod[#, 3], 0, -1, 1, 1, 2, 0]& /@ partit] == 0; a[n_] := Select[IntegerPartitions[n], equalQ] // Length; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 54}] (* Jean-François Alcover, Dec 07 2016 *) CROSSREFS Sequence in context: A026833 A281544 A056882 * A241416 A082854 A086742 Adjacent sequences:  A035531 A035532 A035533 * A035535 A035536 A035537 KEYWORD nonn AUTHOR EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 21:00 EDT 2019. Contains 326324 sequences. (Running on oeis4.)