



0, 0, 0, 0, 1, 45, 1470, 43890, 1291815, 38710035, 1199167200, 38692476900, 1304976397725, 46070080281225, 1702810398539250, 65862570279255750, 2663551451057371875, 112503209942059311375, 4957166849516125744500
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

a(n) = A035342(n,5).
a(n), n>=5, enumerates unordered nvertex forests composed of five plane (ordered) increasingly labeled ternary (3ary) trees. See A001147 (number of increasing ternary trees) and a D. Callan comment there. For a picture of some ternary trees see a W. Lang link under A001764.


LINKS

Table of n, a(n) for n=1..19.


FORMULA

a(n) = n!*A035330(n4)/(5!*2^(n5)), n >= 5; E.g.f. ((x*c(x/2)*(12*x)^(1/2))^5)/5!, where c(x) = g.f. for Catalan numbers A000108, a(0) := 0.


EXAMPLE

a(6)=45 increasing ternary 5forest with n=6 vertices: there are three such 5forests (four one vertex trees together with any of the three different 2vertex trees) each with binomial(6,2)= 15 increasing labelings. W. Lang, Sep 14 2007.


CROSSREFS

Cf. A000108, A035342, A035330.
Sequence in context: A027476 A062262 A137716 * A107399 A053112 A240686
Adjacent sequences: A035518 A035519 A035520 * A035522 A035523 A035524


KEYWORD

easy,nonn


AUTHOR

Wolfdieter Lang


STATUS

approved



