%I #15 Jan 24 2017 16:24:12
%S 1,0,1,0,1,1,1,1,1,2,2,2,3,2,4,3,5,4,6,6,7,8,8,10,11,12,14,14,18,17,
%T 22,21,26,27,30,34,36,41,44,48,54,56,66,66,78,80,91,97,106,116,124,
%U 137,147,159,175,184,207,215,241,252,279,297,321,348,371,404,432,464,503
%N Number of partitions of n into parts 7k+2 or 7k+5.
%C Convolution of A109707 and A109704. - _Vaclav Kotesovec_, Jan 21 2017
%H Vaclav Kotesovec, <a href="/A035433/b035433.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * cos(3*Pi/14) * n^(3/4)) * (1 + (11*Pi/(84*sqrt(21)) - 3*sqrt(21)/(16*Pi)) / sqrt(n)). - _Vaclav Kotesovec_, Aug 26 2015, extended Jan 24 2017
%t nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+2))*(1 - x^(7k+5))), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 26 2015 *)
%K nonn
%O 0,10
%A _Olivier GĂ©rard_
%E Prepended a(0)=1 from _Vaclav Kotesovec_, Jan 23 2017