This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035324 A convolution triangle of numbers, generalizing Pascal's triangle A007318. 21
 1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Replacing each '2' in the recurrence by '1' produces Pascal's triangle A007318(n-1,m-1). The columns appear as A001700, A008549, A045720, A045894, A035330... Triangle T(n,k), 1<=k<=n, given by (0, 3/1, 1/3, 5/3, 3/5, 7/5, 5/7, 9/7, 7/9, 11/9, 9/11, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 28 2012 Riordan array (1, c(x)/sqrt(1-4x)) where c(x) = g.f. for Catalan numbers A000108, first column (k = 0) omitted. - Philippe Deléham, Jan 28 2012 LINKS Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2. W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4. W. Lang, First 10 rows. FORMULA a(n+1, m) = 2*(2*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n=0} A039598(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007 T(n+1,n) = 3*n = A008585(n). T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012 T(n,m) = Sum_{k=m..n} k*binomial(k-1,k-m)*2^(k-m)*binomial(2*n-k-1,n-k))/n. - Vladimir Kruchinin, Aug 07 2013 EXAMPLE Triangle begins: 1 3     1 10    6   1 35   29   9   1 126 130  57  12   1 462 562 312  94  15   1 Triangle (0,3,1/3,5/3,3/5,...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...). MATHEMATICA a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *) PROG (Haskell) a035324 n k = a035324_tabl !! (n-1) !! (k-1) a035324_row n = a035324_tabl !! (n-1) a035324_tabl = map snd \$ iterate f (1, [1]) where    f (i, xs)  = (i + 1, map (`div` (i + 1)) \$       zipWith (+) ((map (* 2) \$ zipWith (*) [2 * i + 1 ..] xs) ++ [0])                   ([0] ++ zipWith (*) [2 ..] xs)) -- Reinhard Zumkeller, Jun 30 2013 (Sage) @cached_function def T(n, k):     if n == 0: return n^k     return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1)) A035324 = lambda n, k: T(k, n) for n in (1..8): print [A035324(n, k) for k in (1..n)] # Peter Luschny, Aug 16 2016 CROSSREFS Cf. A000108, A007318, A039598. Row sums: A049027(n), n >= 1. Alternating row sums give A000108 (Catalan numbers). If offset 0 (n >= m >= 0): convolution triangle based on A001700 (central binomial coeffs. of odd order). Sequence in context: A171509 A171505 A134283 * A171814 A091965 A171568 Adjacent sequences:  A035321 A035322 A035323 * A035325 A035326 A035327 KEYWORD easy,nice,nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 05:31 EST 2019. Contains 319304 sequences. (Running on oeis4.)