%I #17 Jan 30 2020 21:29:14
%S 1,55,3850,298375,24466750,2079673750,181228712500,16084048234375,
%T 1447564341093750,131728355039531250,12095058053629687500,
%U 1118792869960746093750,104133797896346367187500
%N Related to deca-factorial numbers A045757.
%C Convolution of A035308(n-1) with A025755(n), n >= 1.
%H Michael De Vlieger, <a href="/A035323/b035323.txt">Table of n, a(n) for n = 1..502</a>
%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F a(n) = 10^(n-1)*A045757(n)/n!, A045757(n)= (10*n-9)(!^10) := product(10*j-9, j=1..n); G.f. (-1+(1-100*x)^(-1/10))/10.
%F D-finite with recurrence: n*a(n) +10*(-10*n+9)*a(n-1)=0. - _R. J. Mathar_, Jan 28 2020
%t Rest@ CoefficientList[Series[(-1 + (1 - 100 x)^(-1/10))/10, {x, 0, 13}], x] (* _Michael De Vlieger_, Oct 13 2019 *)
%Y Cf. A045757, A035308, A025755.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_