This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035310 Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors. 12
 1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ways of partitioning an n-multiset with multiplicities some partition of n. LINKS EXAMPLE a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12. MAPLE with(numtheory): g:= proc(n, k) option remember;       `if`(n>k, 0, 1) +`if`(isprime(n), 0,       add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))     end: b:= proc(n, i, l)       `if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))\$2),       `if`(i<1, 0, add(b(n-i*j, i-1, [l[], i\$j]), j=0..n/i)))     end: a:= n-> b(n\$2, []): seq(a(n), n=1..10);  # Alois P. Heinz, May 26 2013 MATHEMATICA g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *) PROG (Python) from sympy.core.cache import cacheit from sympy import divisors, isprime, prime from operator import mul @cacheit def g(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum([0 if d>k else g(n/d, d) for d in divisors(n)[1:-1]])) @cacheit def b(n, i, l):     if n==0:         p=reduce(mul, [prime(t + 1)**l[t] for t in xrange(len(l))])         return g(p, p)     else: return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in xrange(n/i + 1)]) def a(n): return b(n, n, []) for n in xrange(1, 11): print a(n) # Indranil Ghosh, Aug 19 2017, after Maple code CROSSREFS Cf. A025487, A000041, A000110, A035098, A080688. Sequence A035341 counts the ordered cases. Tables A093936 and A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147. Cf. A035341, A093936, A095705. Sequence in context: A000775 A149374 A149375 * A022016 A151441 A032380 Adjacent sequences:  A035307 A035308 A035309 * A035311 A035312 A035313 KEYWORD nonn,more,nice AUTHOR EXTENSIONS More terms from Erich Friedman. 81199 from Alford Arnold, Mar 04 2008 a(10) from Alford Arnold, Mar 31 2008 a(10) corrected by Alford Arnold, Aug 07 2008 a(11)-a(13) from Alois P. Heinz, May 26 2013 a(14) from Alois P. Heinz, Sep 27 2014 a(15) from Alois P. Heinz, Jan 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 06:47 EDT 2019. Contains 324218 sequences. (Running on oeis4.)