%I
%S 1,2,4,5,8,9,10,16,18,20,23,25,31,32,36,37,40,41,43,45,46,49,50,59,61,
%T 62,64,72,73,74,80,81,82,83,86,90,92,98,100,103,107,113,115,118,121,
%U 122,124,125,127,128,131,139,144,146,148,155,160,162,163,164
%N Indices of nonzero terms in expansion of Dirichlet series Product_p (1(Kronecker(m,p)+1)*p^(s)+Kronecker(m,p)*p^(2s))^(1) for m= 41.
%C Also, positive numbers represented by 2x^2+3xy4y^2, discriminant 41.
%C The PARI code gives the sequence A035223: 1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, ...  _Colin Barker_, Jun 18 2014
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t Reap[For[n = 0, n <= 100, n++, If[Reduce[ 2*x^2 + 3*x*y  4*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]  _N. J. A. Sloane_, Jun 05 2014
%o (PARI) direuler(p=2,101,1/(1(kronecker(m,p)*(XX^2))X))
%Y Primes: A141181.
%Y Cf. A035223.
%K nonn
%O 1,2
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Jun 17 2014
