This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035264 Nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29. 2


%S 1,4,5,7,9,13,16,20,23,25,28,29,35,36,45,49,52,53,59,63,64,65,67,71,

%T 80,81,83,91,92,100,103,107,109,112,115,116,117,121,125,139,140,144,

%U 145,149,151,161,167,169,173,175,179,180,181,196,197,199,203,207,208

%N Nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.

%C Terms seem to be exactly the numbers represented by the indefinite binary quadratic form (1, 7, 5) with discriminant 29 (Lagrange-Gauss reduced (1, 5, -1)). - _Peter Luschny_, Jun 24 2014

%H Peter Luschny, <a href="/A035264/b035264.txt">Table of n, a(n) for n = 1..1983</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%o (PARI) direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))

%Y Cf. A038901.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Dec 11 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 20:03 EST 2015. Contains 264509 sequences.