%I
%S 1,4,5,7,9,13,16,20,23,25,28,29,35,36,45,49,52,53,59,63,64,65,67,71,
%T 80,81,83,91,92,100,103,107,109,112,115,116,117,121,125,139,140,144,
%U 145,149,151,161,167,169,173,175,179,180,181,196,197,199,203,207,208
%N Nonzero terms in expansion of Dirichlet series Product_p (1(Kronecker(m,p)+1)*p^(s)+Kronecker(m,p)*p^(2s))^(1) for m = 29.
%C Terms seem to be exactly the numbers represented by the indefinite binary quadratic form (1, 7, 5) with discriminant 29 (LagrangeGauss reduced (1, 5, 1)).  _Peter Luschny_, Jun 24 2014
%H Peter Luschny, <a href="/A035264/b035264.txt">Table of n, a(n) for n = 1..1983</a>
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%o (PARI) direuler(p=2,101,1/(1(kronecker(m,p)*(XX^2))X))
%Y Cf. A038901.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Dec 11 1999
