

A035264


Nonzero terms in expansion of Dirichlet series Product_p (1(Kronecker(m,p)+1)*p^(s)+Kronecker(m,p)*p^(2s))^(1) for m = 29.


2



1, 4, 5, 7, 9, 13, 16, 20, 23, 25, 28, 29, 35, 36, 45, 49, 52, 53, 59, 63, 64, 65, 67, 71, 80, 81, 83, 91, 92, 100, 103, 107, 109, 112, 115, 116, 117, 121, 125, 139, 140, 144, 145, 149, 151, 161, 167, 169, 173, 175, 179, 180, 181, 196, 197, 199, 203, 207, 208
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Terms seem to be exactly the numbers represented by the indefinite binary quadratic form (1, 7, 5) with discriminant 29 (LagrangeGauss reduced (1, 5, 1)).  Peter Luschny, Jun 24 2014


LINKS

Peter Luschny, Table of n, a(n) for n = 1..1983
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


PROG

(PARI) direuler(p=2, 101, 1/(1(kronecker(m, p)*(XX^2))X))


CROSSREFS

Cf. A038901.
Sequence in context: A052147 A139690 A035266 * A234257 A243300 A231575
Adjacent sequences: A035261 A035262 A035263 * A035265 A035266 A035267


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 11 1999


STATUS

approved



