This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035172 a(n) = Sum_{d|n} Kronecker(-18, d). 2
 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 2, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, 2, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). For n nonzero, a(n) is nonzero if and only if n is in A002479. REFERENCES N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.51). LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 A. Berkovich and H. Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, arXiv:math/0611300 [math.NT], 2006-2007. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q * psi(-q^3) * psi(-q^6) * chi(-q^4) / chi(-q) in powers of q where psi(), chi() are Ramanujan theta functions. G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(24*k)) * (1 + x^k) / (1 + x^(4*k)). - Michael Somos, Apr 25 2003 Euler transform of period 24 sequence [ 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, ...]. - Michael Somos, Apr 25 2003 Moebius transform is period 24 sequence [ 1, 0, 0, 0, -1, 0, -1 ,0, 0, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 28 2006 multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1,3 (mod 8), a(p^e) = (1 + (-1)^e)/2 if p == 5,7 (mod 8). - Michael Somos, Aug 04 2006 G.f.: Sum_{k>0} x^k * (1 - x^(4*k)) * (1 - x^(6* k)) / (1 + x^(12*k)). - Michael Somos, Aug 04 2006 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -18. G.f.: 1 + Sum{n = -infinity...infinity} (q^n - q^(5n)) / (1 + q^(12n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007 MATHEMATICA a[n_] := DivisorSum[n, KroneckerSymbol[-18, #]&]; Array[a, 105] (* Jean-François Alcover, Nov 14 2015 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -18, d)))} (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -18, p) * X))[n])} (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^24 + A) / eta(x + A) / eta(x^8 + A), n))} CROSSREFS Cf. A002479, A122071 (odd bisection). Sequence in context: A103633 A026821 A039964 * A110174 A022909 A292136 Adjacent sequences:  A035169 A035170 A035171 * A035173 A035174 A035175 KEYWORD nonn,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 16:20 EST 2019. Contains 319335 sequences. (Running on oeis4.)