login
Values of phi(n) corresponding to A035113.
4

%I #17 Mar 09 2022 16:30:54

%S 1,2,2,4,4,4,6,6,8,8,8,8,10,12,12,12,12,16,16,16,16,16,18,18,20,20,20,

%T 22,24,24,24,24,24,24,24,28,30,32,32,32,32,32,32,36,36,36,36,36,40,40,

%U 40,40,40,40,42,42,44,44,46,48,48,48,48,48,48,48,48,48

%N Values of phi(n) corresponding to A035113.

%H Dumitru Damian, <a href="/A035114/b035114.txt">Table of n, a(n) for n = 1..10000</a>

%H L. C. Washington, <a href="https://doi.org/10.1007/978-1-4612-1934-7_15">The Main Conjecture and Annihilation of Class Groups</a>, In: Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol 83 (1997) Springer, New York, NY.

%F a(n) = A000010(A035113(n)). - _Michel Marcus_, Feb 07 2022

%e phi(1)=1, phi(3)=2, phi(4)=2, phi(5)=4, ...

%o (Python) from sympy import totient as A000010

%o def lov(n): return sorted([[A000010(n), n] for n in range(1,n) if n%4 != 2])

%o print([x[0] for x in lov(200)][:100]) # _Dumitru Damian_, Feb 03 2022

%Y Cf. A000010, A035113.

%Y Cf. A002181, A002202, A007614, A014197, A016825, A032447, A058277.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_

%E a(43) onward corrected by _Sean A. Irvine_, Sep 26 2020