login
Numerators in expansion of a certain Dirichlet series.
0

%I #10 Apr 30 2013 07:51:15

%S 1,6,7,11,26,26,42,42,37,62,66,66,86,156,77,51,182,122,126,106,146,

%T 252,162,182,101,182,294,286,222,206,222,372,459,396,187,266,282,286,

%U 434,302,306,462,516,171,462,676,362,462,366,386,306,402,602,1092,426,1092

%N Numerators in expansion of a certain Dirichlet series.

%C The series is sum_{n>=1} a(n)/A031363(n)^(3s). [From _R. J. Mathar_, Jul 16 2010]

%H M. Baake and R. V. Moody, <a href="http://www.math.uni-bielefeld.de/baake/ps/fields3.ps.gz">Similarity submodules and semigroups</a> in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.

%K nonn,easy,frac

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _R. J. Mathar_, Jul 16 2010