login
A035094
Smallest prime of form (n!)*k + 1.
0
2, 3, 7, 73, 241, 2161, 15121, 161281, 1088641, 10886401, 39916801, 958003201, 18681062401, 1133317785601, 9153720576001, 83691159552001, 1778437140480001, 12804747411456001, 851515702861824001, 41359334139002880001, 766364132575641600001, 20232013099996938240001
OFFSET
1,1
COMMENTS
This is one possible generalization of "the least prime problem in special arithmetic progressions" when n in nk+1 is replaced by n!.
a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order n!. - Joerg Arndt, Oct 18 2020
EXAMPLE
a(5)=241 because in arithmetic progression 120k+1=5!k+1 the second term is prime, 241.
MATHEMATICA
sp[n_]:=Module[{nf=n!, k=1}, While[!PrimeQ[nf*k+1], k++]; nf*k+1]; Array[sp, 20] (* Harvey P. Dale, Jan 27 2013 *)
PROG
(PARI) a(n) = for(k=1, oo, if(isprime(k*n! + 1), return(k*n! + 1))); \\ Daniel Suteu, Oct 18 2020
CROSSREFS
Analogous case is A034694. Special case for k=1 is A002981.
Cf. A035093 (values of k).
Sequence in context: A075840 A096225 A333132 * A084729 A101117 A065002
KEYWORD
nonn
AUTHOR
STATUS
approved