login
Number of increasing asymmetric rooted connected graphs where every block is a complete graph.
4

%I #12 Sep 21 2018 02:22:15

%S 1,1,1,7,27,167,1451,12672,133356,1573608,20731512,299642958,

%T 4732486932,81201040470,1500094187292,29730606352920,628968809015766,

%U 14147458062941100,337143091156288002,8485143902146640124

%N Number of increasing asymmetric rooted connected graphs where every block is a complete graph.

%C In an increasing rooted graph nodes are numbered and numbers increase as you move away from root.

%H Andrew Howroyd, <a href="/A035081/b035081.txt">Table of n, a(n) for n = 1..100</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%F Shifts left when EGJ transform applied twice.

%o (PARI) EGJ(v)={Vec(serlaplace(prod(k=1, #v, (1 + x^k/k! + O(x*x^#v))^v[k]))-1, -#v)}

%o seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EGJ(EGJ(v)))); v} \\ _Andrew Howroyd_, Sep 11 2018

%Y Cf. A007549, A007561, A035079, A035080.

%K nonn,eigen

%O 1,4

%A _Christian G. Bower_, Nov 15 1998