login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035039 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,6). 8

%I

%S 0,0,0,0,0,0,0,1,9,46,176,562,1586,4096,9908,22819,50643,109294,

%T 230964,480492,988116,2014992,4084248,8243109,16587165,33308926,

%U 66794952,133820134,267936278,536249296,1072973612,2146540999

%N a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,6).

%C Partial sums of A035038.

%H Reinhard Zumkeller, <a href="/A035039/b035039.txt">Table of n, a(n) for n = 0..1000</a>

%H J. Eckhoff, <a href="http://dx.doi.org/10.1007/BF01297698">Der Satz von Radon in konvexen Produktstrukturen II</a>, Monat. f. Math., 73 (1969), 7-30.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (9,-35,77,-105,91,-49,15,-2).

%F a(n) = A055248(n,7).

%F G.f.: x^7/((1-2*x)*(1-x)^7).

%F a(n) = sum_{k=0..n}, C(n, k+7) = sum_{k=7..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 6). - _Paul Barry_, Aug 23 2004

%p a:=n->sum(binomial(n,j),j=7..n): seq(a(n), n=0..31); # _Zerinvary Lajos_, Feb 12 2007

%t a=1;lst={};s1=s2=s3=s4=s5=s6=s7=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;s6+=s5;s7+=s6;AppendTo[lst,s7];a=a*2,{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 10 2009 *)

%t Table[2^n-Total[Binomial[n,Range[0,6]]],{n,40}] (* or *) LinearRecurrence[ {9,-35,77,-105,91,-49,15,-2},{0,0,0,0,0,0,0,1},40] (* _Harvey P. Dale_, Apr 22 2016 *)

%o (Haskell)

%o a035039 n = a035039_list !! n

%o a035039_list = map (sum . drop 7) a007318_tabl

%o -- _Reinhard Zumkeller_, Jun 20 2015

%Y Cf. A000079, A000225, A000295, A002663, A002664, A035038-A035042.

%Y Cf. A007318.

%K nonn,easy

%O 0,9

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 10:48 EST 2016. Contains 278699 sequences.