%I #14 Jan 30 2020 21:29:14
%S 1,36,1632,81600,4308480,235530240,13189693440,751812526080,
%T 43438057062400,2536782532444160,149439552820346880,
%U 8866746800673914880,529276578255612149760,31756594695336728985600
%N Related to octo-factorial numbers A045755.
%C Convolution of A034977(n-1) with A025753(n), n >= 1.
%H Michael De Vlieger, <a href="/A034996/b034996.txt">Table of n, a(n) for n = 1..555</a>
%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F a(n) = 8^(n-1)*A045755(n)/n!, A045755(n)=(8*n-7)!^8 := product(8*j-7, j=1..n); G.f. (-1+(1-64*x)^(-1/8))/8.
%F D-finite with recurrence: n*a(n) +8*(-8*n+7)*a(n-1)=0. - _R. J. Mathar_, Jan 28 2020
%t Rest@ CoefficientList[Series[(-1 + (1 - 64*x)^(-1/8))/8, {x, 0, 14}], x] (* _Michael De Vlieger_, Oct 13 2019 *)
%Y Cf. A045755, A034977, A025753, A034904.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_