login
a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or "Zag" number (see A000182).
4

%I #17 May 12 2018 12:52:27

%S 2,8,17,29,44,63,85,110,138,170,205,243,284,329,376,427,482,539,600,

%T 664,731,802,876,953,1033,1116,1203,1293,1386,1483,1583,1685,1792,

%U 1901,2014,2130,2249,2371,2497,2626,2758,2893,3032,3174,3319,3467,3619,3774

%N a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or "Zag" number (see A000182).

%D J. Peters and J. Stein, Matematische Tafeln. Revised Russian Edition in 1968, Moscow, Table 9a.

%H Michael De Vlieger, <a href="/A034972/b034972.txt">Table of n, a(n) for n = 1..5000</a>

%F a(n) = floor( T(n+1)/T(n) ) where T(n) is n-th coefficient in expansion of tan(x).

%e a(5) = floor(T(6)/T(5)) = floor(353792/7936) = floor(44.58) = 44.

%t Map[Floor[#2/#1] & @@ # &, Partition[Table[If[n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]], {n, 49}], 2, 1]] (* _Michael De Vlieger_, Jul 31 2017, after _Michael Somos_ at A000182 *)

%Y Cf. A000182.

%K nonn,easy

%O 1,1

%A _Labos Elemer_