This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034941 Number of labeled triangular cacti with 2n+1 nodes (n triangles). 6
 1, 1, 15, 735, 76545, 13835745, 3859590735, 1539272109375, 831766748637825, 585243816844111425, 520038240188935042575, 569585968715180280038175, 753960950911045074462890625, 1186626209895384011075327630625, 2190213762744801162239116550679375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also the number of 3-uniform hypertrees spanning 2n + 1 labeled vertices. - Gus Wiseman, Jan 12 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016. Katie Gedeon, N Proudfoot, B Young, Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures, arXiv preprint arXiv:1611.07474 [math.CO], 2016-2017. Nicholas Proudfoot and Ben Young, Configuration spaces, FS^op-modules, and Kazhdan-Lusztig polynomials of braid matroids, arXiv:1704.04510 [math.RT], 2017. Eric Weisstein's World of Mathematics, Cactus Graph FORMULA a(n) = A034940(n)/(2n+1). The closed form a(n) = (2n-1)!! (2n+1)^(n-1) can be obtained from the generating function in A034940. - Noam D. Elkies, Dec 16 2002 EXAMPLE a(3) = 5!! * 7^2 = (1*3*5) * 49 = 735. From Gus Wiseman, Jan 12 2019: (Start) The a(2) = 15 3-uniform hypertrees:   {{1,2,3},{1,4,5}}   {{1,2,3},{2,4,5}}   {{1,2,3},{3,4,5}}   {{1,2,4},{1,3,5}}   {{1,2,4},{2,3,5}}   {{1,2,4},{3,4,5}}   {{1,2,5},{1,3,4}}   {{1,2,5},{2,3,4}}   {{1,2,5},{3,4,5}}   {{1,3,4},{2,3,5}}   {{1,3,4},{2,4,5}}   {{1,3,5},{2,3,4}}   {{1,3,5},{2,4,5}}   {{1,4,5},{2,3,4}}   {{1,4,5},{2,3,5}} The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypertrees spanning 7 vertices, and their multiplicities in the labeled case, which add up to a(3) = 735:   105 X {{1,2,7},{3,4,7},{5,6,7}}   630 X {{1,2,6},{3,4,7},{5,6,7}} (End) MATHEMATICA Table[(2n+1)^(n-1)(2n)!/(2^n n!), {n, 0, 14}] (* Jean-François Alcover, Nov 06 2018 *) CROSSREFS Cf. A000272, A000665, A003081, A030019, A035053, A125791, A302374, A320444, A323292, A323298. Sequence in context: A209461 A209523 A117812 * A199227 A055683 A196465 Adjacent sequences:  A034938 A034939 A034940 * A034942 A034943 A034944 KEYWORD nonn AUTHOR Christian G. Bower, Oct 15 1998 EXTENSIONS Typo in a(10) corrected and more terms from Alois P. Heinz, Jun 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 02:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)