This site is supported by donations to The OEIS Foundation.



Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034922 Numbers n such that 17^n-16 is prime. 1
11, 21, 127, 149, 469, 2019 (list; graph; refs; listen; history; text; internal format)



Related to hyperperfect numbers of a certain form.

Contribution from Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009: (Start)

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below:

- For t=2 to infinity, the sequence m(n,t) = n exp(t) - (n-1) is called a Mersenne Sequence Rooted on n

- If n is prime, this sequence is called a Legitimate Mersenne Sequence

- Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN)

- If j belonging to the sequence m(n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP).

Note: m(n,t) = n*m(n,t-1) + n exp(2) - 2*n+1.

These numbers play a role in the context of hyperperfect numbers.


The next terms are > 4000. - Vincenzo Librandi, Sep 27 2012


Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]

Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134) [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]

Daniel Minoli, Robert Bear, Hyperperfect Numbers, PME (Pi Mu Epsilon) Journal, University Oklahoma, Fall 1975, pp. 153-157. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]


Table of n, a(n) for n=1..6.

J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3


Select[Range[3000], PrimeQ[17^# - 16] &] (* Vincenzo Librandi, Sep 27 2012 *)


Sequence in context: A166707 A116525 A094623 * A015446 A083177 A110466

Adjacent sequences:  A034919 A034920 A034921 * A034923 A034924 A034925




Jud McCranie


a(6) from Vincenzo Librandi, Sep 27 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 04:27 EST 2014. Contains 252079 sequences.