

A034922


Numbers n such that 17^n16 is prime.


1




OFFSET

1,1


COMMENTS

Related to hyperperfect numbers of a certain form.
Contribution from Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009: (Start)
Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below:
 For t=2 to infinity, the sequence m(n,t) = n exp(t)  (n1) is called a Mersenne Sequence Rooted on n
 If n is prime, this sequence is called a Legitimate Mersenne Sequence
 Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (nGMN)
 If j belonging to the sequence m(n,t) is prime, it is then called a nGeneralized Mersenne Prime (nGMP).
Note: m(n,t) = n*m(n,t1) + n exp(2)  2*n+1.
These numbers play a role in the context of hyperperfect numbers.
(End)
The next terms are > 4000.  Vincenzo Librandi, Sep 27 2012


REFERENCES

Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]
Daniel Minoli, Voice over MPLS, McGrawHill, New York, NY, 2002, ISBN 0071406158 (p.114134) [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]
Daniel Minoli, Robert Bear, Hyperperfect Numbers, PME (Pi Mu Epsilon) Journal, University Oklahoma, Fall 1975, pp. 153157. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 27 2009]


LINKS

Table of n, a(n) for n=1..6.
J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.


MATHEMATICA

Select[Range[3000], PrimeQ[17^#  16] &] (* Vincenzo Librandi, Sep 27 2012 *)


PROG

(PARI) isok(n) = isprime(17^n16); \\ Michel Marcus, Mar 11 2016


CROSSREFS

Sequence in context: A166707 A116525 A094623 * A015446 A254208 A083177
Adjacent sequences: A034919 A034920 A034921 * A034923 A034924 A034925


KEYWORD

nonn


AUTHOR

Jud McCranie


EXTENSIONS

a(6) from Vincenzo Librandi, Sep 27 2012


STATUS

approved



