login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034902 a(i) is square mod a(j), i <> j; a(n) prime; a(1) = 2. 2
2, 7, 113, 233, 337, 2129, 3833, 8737, 19553, 46337, 72689, 103681, 361649, 449689, 477017, 668273, 3095353, 7212577, 13188281, 26340857, 46012633, 246116833, 330177017, 354681097, 1014496289, 1315295809, 2269762961, 4651240801, 14947292497 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..29.

MATHEMATICA

a[1] = 2; squareModQ[p_, q_] := (For[k=0, k <= q, k++, If[Mod[p-k^2, q] == 0, Return[True]]]; Return[False]); a[n_] := a[n] = For[r=NextPrime[a[n-1]], True, r=NextPrime[r], If[And @@ (squareModQ[r, #] && squareModQ[#, r] & /@ Array[a, n-1]), Return[r]]]; Table[Print[a[n]]; a[n], {n, 1, 10}] (* Jean-Fran├žois Alcover, Dec 10 2014 *)

PROG

(PARI) isok(newp, v, n) = {for (k=1, n, if (!issquare(Mod(newp, v[k])) || !issquare(Mod(v[k], newp)), return (0)); ); return (1); }

lista(nn) = {my(v=vector(nn), lastp=2); v[1] = lastp; for (n=2, nn, my(newp = nextprime(lastp+1)); while (! isok(newp, v, n-1), newp = nextprime(newp+1)); v[n] = newp; lastp = newp; ); v; } \\ Michel Marcus, Sep 25 2020

CROSSREFS

Cf. A034900, A034901.

Sequence in context: A264999 A326940 A326964 * A101429 A270749 A206151

Adjacent sequences:  A034899 A034900 A034901 * A034903 A034904 A034905

KEYWORD

nonn,nice,more

AUTHOR

David W. Wilson

EXTENSIONS

a(24)-a(29) from Sean A. Irvine, Sep 20 2020

Name edited by Michel Marcus, Sep 24 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 16:12 EST 2021. Contains 341825 sequences. (Running on oeis4.)