login
A034880
Minimal number of rectangles with integer sides that will form any rectangle with area n.
2
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 4, 1, 4, 3, 2, 1, 5, 5, 2, 3, 4, 1, 6, 1, 4, 3, 2, 5, 8, 1, 2, 3, 6, 1, 6, 1, 4, 7, 2, 1, 8, 7, 6, 3, 4, 1, 6, 5, 8, 3, 2, 1, 8, 1, 2, 9, 8, 5, 6, 1, 4, 3, 9, 1, 10, 1, 2, 7, 4, 7, 6, 1, 11, 9, 2, 1, 10, 5, 2
OFFSET
1,4
COMMENTS
A033676(n) <= a(n) <= A052126(n). - Charlie Neder, Oct 06 2018
LINKS
Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 147.
Sean A. Irvine, Java program (github)
FORMULA
a(prime) = 1. - Sean A. Irvine, Sep 10 2020
EXAMPLE
a(24) = 5 because the five rectangles 1 X 3, 1 X 3, 1 X 6, 1 X 6, 1 X 6 can form each of the rectangles 1 X 24, 2 X 12, 3 X 8, and 4 X 6. - Sean A. Irvine, Sep 10 2020
CROSSREFS
Cf. A070966. [R. J. Mathar, Sep 25 2008]
Sequence in context: A095165 A355366 A046805 * A257977 A070966 A338669
KEYWORD
nonn,changed
EXTENSIONS
a(24)-a(59) from Charlie Neder, Oct 06 2018
More terms from Sean A. Irvine, Sep 10 2020
STATUS
approved