This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034872 Central column of Losanitsch's triangle A034851. 2
 1, 1, 1, 2, 4, 6, 10, 19, 38, 66, 126, 236, 472, 868, 1716, 3235, 6470, 12190, 24310, 46252, 92504, 176484, 352716, 676270, 1352540, 2600612, 5200300, 10030008, 20060016, 38781096, 77558760, 150273315, 300546630, 583407990, 1166803110, 2268795980, 4537591960, 8836340260, 17672631900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 N. J. A. Sloane, Classic Sequences MATHEMATICA Table[(1/2)*(Binomial[n, Floor[n/2]] + Binomial[Mod[n, 2], Mod[Floor[n/2], 2]]*Binomial[Floor[n/2], Floor[Floor[n/2]/2]]), {n, 0, 50}] (* G. C. Greubel, Feb 23 2018 *) PROG (PARI) for(n=0, 50, print1((1/2)*(binomial(n, n\2) + binomial(n%2, (n\2)%2)* binomial(n\2, (n\2)\2)), ", ")) \\ G. C. Greubel, Feb 23 2018 (MAGMA) [(1/2)*(Binomial(n, Floor(n/2)) + Binomial(n mod 2, Floor(n/2) mod 2)*Binomial(Floor(n/2), Floor(Floor(n/2)/2))): n in [0..50]]; // G. C. Greubel, Feb 23 2018 CROSSREFS Sequence in context: A026680 A317639 A164141 * A032362 A282251 A176716 Adjacent sequences:  A034869 A034870 A034871 * A034873 A034874 A034875 KEYWORD nonn AUTHOR EXTENSIONS Terms a(32) onward added by G. C. Greubel, Feb 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 07:44 EST 2019. Contains 329914 sequences. (Running on oeis4.)